Die Windkraft ist eine wichtige Säule der Energiewende. Mit 32 Prozent des produzierten Stroms im Jahr 2023 leistet sie einen wichtigen Beitrag zur Sicherung der Stromversorgung. Beim Design der Windenergieanlagen gilt den Rotorblättern besondere Aufmerksamkeit: Sie wandeln die kinetische Energie des Windes in Rotation um; Generatoren transformieren diese Bewegung in Strom. Damit dies optimal funktioniert, erhalten die Rotorblätter ein aerodynamisches Profil, mit Ausnahme der ersten 20 Prozent nahe der Rotornabe. Ihn haben Ingenieur*innen bisher ohne die Berücksichtigung aerodynamischer Gesichtspunkte entwickelt.
„In diesem Bereich ist der Flügel vergleichsweise dick, was eine kompliziertere Umströmung mit sich bringt“,
erklärt Projektleiter Prof. Dr. Alois Schaffarczyk.
Aerodynamische Herausforderungen im Übergangsbereich
Schaffarczyk hat sich als Professor für Technische Mechanik und Mathematik drei Jahrzehnte lang an der FH Kiel mit Windkraftanlagen und deren Optimierung befasst. Das Forschungsprojekt „Entwicklung und Vermessung von sehr dicken aerodynamischen Profilen für Windturbinenblätter“ war sein letztes Projekt als FH-Professor. Schaffarczyk wollte herausfinden, was passiert, wenn man das Profil des sogenannten Übergangsbereichs des Rotorblattes aerodynamisch auslegt. Unterstützt wurde er dabei von Zhong-Xia Wang (Gastwissenschaftler aus Beijing, China) und Brandon Lobo (Doktorand aus Indien).
Ihr Forschungsprojekt führten die Wissenschaftler an einem generischen Blatt der 10-Megawattklasse durch. Diese Windkraftanlagen sind speziell für den Offshore-Einsatz konzipiert und zeichnen sich durch beeindruckende Abmessungen aus: Die Nabenhöhe beträgt über 140 Meter, der Rotordurchmesser liegt bei rund 200 Metern, die Rotorblätter sind über 90 Meter lang. Der vom Team ins Visier genommene Bereich umfasst die inneren 15 Meter des Rotors, und damit eine umstrichene Fläche von ca. 750 Quadratmetern.
Vielversprechende Ergebnisse für Offshore-Windkraftanlagen
Die Forscher entwarfen mehrere geeignete Profile, identifizierten die Vielversprechendsten und simulierten ihr Strömungsverhalten mit sogenannten CFD-Modellen. Auf Basis dieser Berechnungen verfeinerte das Projektteam das Profil und baute das Blattprofil mit den besten Eigenschaften als reales Modell. Beim Bau des Modells unterstützte die Rendsburger AEROVIDE GmbH. Die Deutsche WindGuard Engineering GmbH begleitete die gesamten Entwicklungsprozesse und brachte ihr Know-how aus Untersuchungen an Rotorblättern im Freifeld und im Windkanal ein. Im Großwindkanal der Deutschen WindGuard in Bremerhaven führte das Team aerodynamische Messungen durch. Die Ergebnisse der Tests sind vielversprechend: Das im Projekt entwickelte aerodynamische Profil ermöglicht einen bis zu vier Prozent höheren Stromertrag.
„Das wäre extrem viel, damit könnte der Gewinn maßgeblich gesteigert werden“,
betont Prof. Dr. Alois Schaffarczyk.
Weitere Ertragssteigerung durch aerodynamische Hilfsmittel
Zusätzlich berücksichtigte das Projektteam aerodynamische Hilfsmittel wie sogenannte Vortex-Generatoren und Splitterplatten. Beide können im Nachhinein an Rotorblätter angebracht werden, zum Beispiel im Rahmen regulärer Wartungsarbeiten. Sie helfen, den aerodynamischen Wirkungsgrad der Rotorblätter zu optimieren und Strömungsabrisse zu reduzieren.
„Beim Einsatz dieser aerodynamischen Hilfsmittel konnten wir sogar zusätzliche signifikante Veränderungen der Auftriebs- und Widerstandseigenschaften beobachten und damit eine weitere Leistungssteigerung“,
erklärt Nicholas Balaresque, Geschäftsführer der Deutschen WindGuard Engineering GmbH in Bremerhaven.
„Wir sind überzeugt davon, mit unserem Forschungsprojekt eine wichtige technologische Lücke geschlossen zu haben“,
ergänzt Prof. Schaffarczyk.
„Es wäre wirklich bedauerlich, wenn Anlagenhersteller diese Chance zur Ertragssteigerung nicht nutzen würden.“
Die Ergebnisse des Forschungsprojekts sind open-access in einer wissenschaftlichen Publikation https://www.mdpi.com/2674-032X/4/3/10 einsehbar.
Hintergrund
Das Forschungsprojekt „Entwicklung und Vermessung von sehr dicken aerodynamischen Profilen für Windturbinenblätter“ wurde von der Deutschen Bundesstiftung Umwelt mit einer
Fördersumme von 234.699 Euro finanziert.
Projektleiter: Prof. Dr. Alois Schaffarczyk (FH Kiel)
Koordinator: Forschungs- und Entwicklungszentrum Fachhochschule Kiel GmbH
Kooperationspartner: Fachhochschule Kiel | Deutsche Windguard GmbH | AEROVIDE GmbH
Quelle: Fachhochschule Kiel
Auch interessant:
- Pressemitteilung, Expertenwissen04.11.2024Auf Dauer kann Regen die Rotorblätter von Windkraftanlagen beschädigen und ihre Leistung mindern – besonders auf See. Wissenschaftler*innen der U Bremen ...
- Fachartikel, Expertenwissen14.10.2024Condition Monitoring Systeme (CMS) erkennen frühzeitig Schäden an Windenergieanlagen, minimieren Ausfallzeiten und Reparaturkosten und tragen so zur optimalen ...